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Building Java ProgramsBuilding Java Programs

Chapter 9: 
Inheritance and Interfaces
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Lecture outline

� background

� categories of employees

� relationships and hierarchies

� inheritance programming

� creating subclasses

� overriding behavior

� multiple levels of inheritance

� interacting with the superclass using super



3Copyright 2006 by Pearson Education

InheritanceInheritance

reading: 9.1 - 9.2
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The software crisis
� software engineering: The practice of 
conceptualizing, designing, developing, documenting, 
and testing large-scale computer programs.

� Large-scale projects face many issues:

� getting many programmers to work together

� getting code finished on time

� avoiding redundant code

� finding and fixing bugs

� maintaining, improving, and reusing existing code

� code reuse: The practice of writing program code once 
and using it in many contexts.
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Law firm employee analogy
� common rules: hours, vacation time, benefits, regulations, ...

� all employees attend common orientation to learn general rules

� each employee receives 20-page manual of the common rules

� each subdivision also has specific rules:

� employee attends a subdivision-specific orientation to learn them

� employee receives a smaller (1-3 page) manual of these rules

� smaller manual adds some rules and also changes some rules from 
the large manual ("use the pink form instead of yellow form"...)
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Separating behavior
� Why not just have a 22 page Lawyer manual, a 21-page 
Secretary manual, a 23-page Marketer manual, etc.?

� Some advantages of the separate manuals:

� maintenance: If a common rule changes, we'll need to update 
only the common manual.

� locality: A person can look at the lawyer manual and quickly 
discover all rules that are specific to lawyers.

� Some key ideas from this example:

� It's useful to be able to describe general rules that will apply to 
many groups (the 20-page manual).

� It's also useful for a group to specify a smaller set of rules for 
itself, including being able to replace rules from the overall set.
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Is-a relationships, hierarchies

� is-a relationship: A hierarchical connection where one 
category can be treated as a specialized version of 
another.

� every marketer is an employee

� every legal secretary is a secretary

� inheritance hierarchy: A set of classes connected by 
is-a relationships that can share common code.

� Often drawn as a downward tree of connected boxes or ovals 
representing classes:
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Employee regulations
� Consider the following employee regulations:

� Employees work 40 hours per week.

� Employees make $40,000 per year, except legal secretaries 
who make $5,000 extra per year ($45,000 total), and 
marketers who make $10,000 extra per year ($50,000 total).

� Employees have 2 weeks of paid vacation leave per year, 
except lawyers who get an extra week (a total of 3).

� Employees should use a yellow form to apply for leave, except 
for lawyers who use a pink form.

� Each type of employee has some unique behavior:

� Lawyers know how to sue.

� Marketers know how to advertise.

� Secretaries know how to take dictation.

� Legal secretaries know how to prepare legal documents.
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General employee code
// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {
return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow";     // use the yellow form

}
}

� Exercise: Implement class Secretary , based on the previous 
employee regulations.
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Redundant secretary code
// A redundant class to represent secretaries.
public class Secretary {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {
return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow";     // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}
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Desire for code-sharing
� The takeDictation method is the only unique behavior 
in the Secretary class.

� We'd like to be able to say the following:

// A class to represent secretaries.

public class Secretary {

<copy all the contents from Employee class.>

public void takeDictation(String text) {

System.out.println("Taking dictation of text: " + te xt);

}

}
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Inheritance
� inheritance: A way to form new classes based on 
existing classes, taking on their attributes/behavior.

� a way to group related classes

� a way to share code between two or more classes

� We say that one class can extend another by absorbing 
its state and behavior.

� superclass: The parent class that is being extended.

� subclass: The child class that extends the superclass and 
inherits its behavior.

� The subclass receives a copy of every field and method from its 
superclass.
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Inheritance syntax
� Creating a subclass, general syntax:

public class <name> extends <superclass name> {

� Example:

public class Secretary extends Employee {

....

}

� By extending Employee , each Secretary object now:

� receives a getHours , getSalary , getVacationDays , and 
getVacationForm method automatically

� can be treated as an Employee by any other code (seen later)

(e.g. a Secretary could be stored in a variable of type 
Employee or stored as an element of an Employee[] )
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Improved secretary code
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Now we only write the parts unique to each type.
� Secretary inherits getHours , getSalary , getVacationDays , 
and getVacationForm methods from Employee .

� Secretary adds the takeDictation method.
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Implementing Lawyer
Let's implement a Lawyer class.

� Consider the following employee regulations:

� Lawyers who get an extra week of paid vacation (a total of 3).

� Lawyers use a pink form when applying for vacation leave.

� Lawyers have some unique behavior: they know how to sue.

� The problem: We want lawyers to inherit most of the 
behavior of the general employee, but we want to 
replace certain parts with new behavior.
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Overriding methods
� override: To write a new version of a method in a 
subclass that replaces the superclass's version.

� There is no special syntax for overriding.
To override a superclass method, just write a new version of it 
in the subclass.  This will replace the inherited version.

� Example:

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee clas s
public String getVacationForm() {

return "pink";
}

...
}

� Exercise: Complete the Lawyer class.
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Complete Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15;           // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}

� Exercise: Now complete the Marketer class.  Marketers make 
$10,000 extra ($50,000 total) and know how to advertise.
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Complete Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public void advertise() {
System.out.println( "Act now while supplies last!" );

}

public double getSalary() {
return 50000.0;      // $50,000.00 / year

}
}
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Levels of inheritance
�Deep hierarchies can be created by multiple 
levels of subclassing.

� Example: The legal secretary is the same as a regular secretary 
except for making more money ($45,000) and being able to file 
legal briefs.

public class LegalSecretary extends Secretary {
...

}

� Exercise: Complete the LegalSecretary class.
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Complete LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {
System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0;      // $45,000.00 / year

}
}
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Interacting with the Interacting with the 

superclass:superclass:
the the supersuper keywordkeyword

reading: 9.3
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Changes to common behavior

� Imagine that a company-wide change occurs that 
affects all employees.

Example: Because of inflation, everyone is given a $10,000 raise.

� The base employee salary is now $50,000.

� Legal secretaries now make $55,000.

� Marketers now make $60,000.

� We must modify our code to reflect this policy change.
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Modifying the superclass
� This modified Employee class handles the new raise:

// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 50000.0;      // $50,000.00 / year

}

...
}

� What problem now exists in the code?

� The Employee subclasses are now incorrect.

� They have overridden the getSalary method to return other 

values such as 45,000 and 50,000 that need to be changed.
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An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {

return 55000.0;

}

...

}

public class Marketer extends Employee {

public double getSalary() {

return 60000.0;

}

...

}

� The employee subtypes' salaries are tied to the overall base 
employee salary, but the subclasses' getSalary code does not 

reflect this relationship.
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Calling overridden methods
� A subclass can call an overridden method with the 

super keyword.

� Calling an overridden method, syntax:

super . <method name> ( <parameter(s)> )

� Example:

public class LegalSecretary extends Secretary {
public double getSalary() {

double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

}
...

}

� Exercise: Modify the Lawyer and Marketer classes to also use 
the super keyword.
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Improved subclasses
public class Lawyer extends Employee {

public String getVacationForm() {
return "pink";

}

public int getVacationDays() {
return super.getVacationDays() + 5;

}

public void sue() {
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {

System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}
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Inheritance and constructors
� Imagine that we want to give employees more vacation 
days the longer they've been with the company.

� For each year worked, we'll award 2 additional vacation days.

� When an Employee object is constructed, we'll pass in the 
number of years the person has been with the company.

� This will require us to modify our Employee class and add some 

new state and behavior.

� Exercise: Make the necessary modifications to the Employee
class.
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Modified Employee class
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}
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Problem with constructors
� Now that we've added the constructor to the Employee
class, our subclasses do not compile.  The error:

Lawyer.java:2: cannot find symbol
symbol  : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that 
requires parameters) in the superclass, we must now write 
constructors for our employee subclasses as well.

� The long explanation: (next slide)
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The detailed explanation
� Constructors aren't inherited.

� The Employee subclasses don't inherit the 
public Employee(int years) constructor.

� Since our subclasses don't have constructors, they receive a 
default parameterless constructor that contains the following:

public Lawyer() {
super();        // calls public Employee() constructor

}

� But our public Employee(int years) replaces 
the default Employee constructor.

� Therefore all the subclasses' default constructors are now trying 
to call a non-existent default superclass constructor.
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Calling superclass constructor

� Syntax for calling superclass's constructor:

super( <parameter(s)> );

� Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);   // call Employee constructor

}
...

}

� The call to the superclass constructor must be the first 
statement in the subclass constructor.

� Exercise: Make a similar modification to the Marketer class.
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Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

� Exercise: Modify the Secretary subclass to make it compile:

� Secretaries' years of employment are not tracked and they do not
earn extra vacation for them.

� Secretary objects are also constructed without a years parameter.
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Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Note that since the Secretary doesn't require any parameters to its 

constructor, the LegalSecretary now compiles without a constructor 

(its default constructor calls the parameterless Secretary constructor).

� This isn't the best solution; it isn't that Secretaries work for 0 

years, it's that they don't receive a bonus.  How can we fix it?
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Inheritance and fields
� Suppose that we want to give lawyers a $5000 raise for 
each year they've been with the company.

� The following modification doesn't work:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^
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Private access limitations
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

� Private fields cannot be directly accessed from other 
classes, not even subclasses.

� One reason for this is to prevent malicious programmers from 
using subclassing to circumvent encapsulation.

� How can we get around this limitation?
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Improved Employee code
Add an accessor for any field needed by the superclass.
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getYears() {
return years;

}
...

}

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * getYears() ;

}
...

}
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Revisiting Secretary
� The Secretary class currently has a poor solution.

� We set all Secretaries to 0 years because they do not get a 
vacation bonus for their service.

� If we call getYears on a Secretary object, we'll always get 0.

� This isn't a good solution; what if we wanted to give some other
reward to all employees based on years of service?

� Let's redesign our Employee class a bit to allow for a 

better solution.
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Improved Employee code
Let's separate the standard 10 vacation days from those 
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getVacationDays() {
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

� How does this help us improve the Secretary ?
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Improved Secretary code
The Secretary can selectively override the 
getSeniorityBonus method, so that when it runs its 
getVacationDays method, it will use this new version as 

part of the computation.
� Choosing a method at runtime like this is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of  service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}


