Chapter 9:

~Inheritance and Interfaces

Copyright 2006 by Pearson Education

—

; Copyright 2006 by Pearson Education 2

—

Lecture outline

= background

» Categories of employees
» relationships and hierarchies

= inheritance programming
» Creating subclasses
= overriding behavior

= multiple levels of inheritance
» interacting with the superclass using super

Copyright 2006 by Pearson Education

The software crisis

= software engineering: The practice of
conceptualizing, designing, developing, documenting,
and testing large-scale computer programs.

= Large-scale projects face many issues:
= getting many programmers to work together
= getting code finished on time
= avoiding redundant code
» finding and fixing bugs
= Maintaining, improving, and reusing existing code

= code reuse: The practice of writing program code once
and using it in many contexts.

—

_ Copyright 2006 by Pearson Education 4

—

Law firm employee analogy

= common rules: hours, vacation time, benefits, regulations, ...
= all employees attend common orientation to learn general rules
=« each employee receives 20-page manual of the common rules

= each subdivision also has specific rules:
=« employee attends a subdivision-specific orientation to learn them
» employee receives a smaller (1-3 page) manual of these rules

= smaller manual adds some rules and also changes some rules from
the large manual ("use the pink form instead of yellow form"...)

Employee
20-page manual

il

Lawyer
2-page manual

Secretary
1-page manual

Marketer
3-page manual

—

~ Copyright 2006 by Pearson Education

T

LegalSecretary
1-page manual

Separating behavior

= Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

= Some advantages of the separate manuals:

= maintenance: If a common rule changes, we'll need to update
only the common manual.

= locality: A person can look at the lawyer manual and quickly
discover all rules that are specific to lawyers.

= Some key ideas from this example:

» It's useful to be able to describe general rules that will apply to
many groups (the 20-page manual).

= It's also useful for a group to specify a smaller set of rules for
itself, including being able to replace rules from the overall set.

N

 Copyright 2006 by Pearson Education 6

s

Is-a relationships, hierarchies

= Is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.
= every marketer is an employee
= every legal secretary is a secretary

= inheritance hierarchy: A set of classes connected by
is-a relationships that can share common code.
« Often drawn as a downward tree of connected boxes or ovals

representing classes:
P]

~ Copyright 2006 by Pearson Education

—

Employee regulations

= Consider the following employee regulations:
« Employees work 40 hours per week.

=« Employees make $40,000 per year, except legal secretaries
who make $5,000 extra per year ($45,000 total), and
marketers who make $10,000 extra per year ($50,000 total).

= Employees have 2 weeks of paid vacation leave per year,
except lawyers who get an extra week (a total of 3).

« Employees should use a yellow form to apply for leave, except
for lawyers who use a pink form.

= Each type of employee has some unique behavior:

= Lawyers know how to sue.

= Marketers know how to advertise.

» Secretaries know how to take dictation.

= Legal secretaries know how to prepare legal documents.

" Copyright 2006 by Pearson Education 8

s

General employee code

Il A class to represent employees in general (20-pa ge manual).
public class Employee {
public int getHours() {

return 40; I/ works 40 hours / week
}
public double getSalary() {
return 40000.0; /1 $40,000.00 / year
}
public int getVacationDays() {
return 10; Il 2 weeks' paid vacation
}
public String getVacationForm() {
return "yellow"; /I use the yellow form
}

= Exercise: Implement class Secretary , based on the previous
employee regulations.

=3}

~_ Copyright 2006 by Pearson Education 9

—

Redundant secretary code

/I A redundant class to represent secretaries.
public class Secretary {
public int getHours() {

return 40; I/ works 40 hours / week
}
public double getSalary() {
return 40000.0; /1 $40,000.00 / year
}
public int getVacationDays() {
return 10; Il 2 weeks' paid vacation
}
public String getVacationForm() {
return "yellow"; /I use the yellow form
}
public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);
}

i}

~_ Copyright 2006 by Pearson Education

—

10

—

—

Desire for code-sharing

= The takeDictation method is the only unique behavior
in the Secretary class.

= We'd like to be able to say the following:

Il A class to represent secretaries.
public class Secretary {
<copy all the contents from Employee class.>

public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);

}

; Copyright 2006 by Pearson Education 11

= inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

= a way to group related classes
= a way to share code between two or more classes

= We say that one class can extend another by absorbing

its state and behavior.
= superclass: The parent class that is being extended.
= subclass: The child class that extends the superclass and

inherits its behavior.
= The subclass receives a copy of every field and method from its

superclass.

" Copyright 2006 by Pearson Education 12

—

Inheritance syntax

= Creating a subclass, general syntax:

public class <name> extends <superclass name> {
= Example:

public class Secretary extends Employee {

}

= By extending Employee , each Secretary object now:

= receives a getHours , getSalary , getVacationDays , and
getVacationForm method automatically

= Can be treated as an Employee by any other code (seen later)

(e.g. a Secretary could be stored in a variable of type
Employee or stored as an element of an Employee[])

—

S — Copyright 2006 by Pearson Education 13

—

Improved secretary code

Il A class to represent secretaries.

public class Secretary extends Employee {
public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);
}
}

= Now we only write the parts unique to each type.

« Secretary inherits getHours , getSalary , getVacationDays
and getVacationForm methods from Employee .

= Secretary adds the takeDictation method.

4

—

; Copyright 2006 by Pearson Education 14

—

Implementing Lawyer

Let's implement a Lawyer class.

= Consider the following employee regulations:
= Lawyers who get an extra week of paid vacation (a total of 3).
= Lawyers use a pink form when applying for vacation leave.
= Lawyers have some unique behavior: they know how to sue.

= The problem: We want lawyers to inherit most of the
behavior of the general employee, but we want to
replace certain parts with new behavior.

—

= P

~ Copyright 2006 by Pearson Education 15

—

Overriding methods

= override: To write a new version of a method in a
subclass that replaces the superclass's version.

= There is no special syntax for overriding.
To override a superclass method, just write a new version of it
in the subclass. This will replace the inherited version.

= Example:

public class Lawyer extends Employee {
I/ overrides getVacationForm method in Employee clas S
public String getVacationForm() {
return "pink";
}

}

= Exercise: Complete the Lawyer class.

—

~ Copyright 2006 by Pearson Education 16

—

m

™

—

Complete Lawyer class

Il A class to represent lawyers.
public class Lawyer extends Employee {
/[overrides getVacationForm from Employee class
public String getVacationForm() {
return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15; // 3 weeks vacation
}

public void sue() {
System.out.printin("l'll see you in court!");
}

= Exercise: Now complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

___ Copyright 2006 by Pearson Education

17

Complete Marketer class

/I A class to represent marketers.
public class Marketer extends Employee {
public void advertise() {

System.out.printin("Act now while supplies last!"
}
public double getSalary() {

return 50000.0; // $50,000.00 / year
}

=3}

o — Copyright 2006 by Pearson Education

18

Levels of inheritance

= Deep hierarchies can be created by multiple

levels of subclassing.

=« Example: The legal secretary is the same as a reqular secretary
except for making more money ($45,000) and being able to file

legal briefs.

public class LegalSecretary extends Secretary {

}

=« Exercise: Complete the LegalSecretary class.

—

"7 Copyright 2006 by Pearson Education 19

—

Complete LegalSecretary class

/Il A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void fileLegalBriefs() {
System.out.printin("l could file all day!");

}
public double getSalary() {

return 45000.0; /[$45,000.00 / year
}

=3}

o — Copyright 2006 by Pearson Education

20

I e O e

- reading: 9.3

s i —— i

| s
Copyright 2'006.by Pearson Education

Changes to common behavior

= Imagine that a company-wide change occurs that
affects all employees.
Example: Because of inflation, everyone is given a $10,000 raise.

= The base employee salary is now $50,000.
» Legal secretaries now make $55,000.
= Marketers now make $60,000.

= We must modify our code to reflect this policy change.

—

~ Copyright 2006 by Pearson Education 22

—

Modifying the superclass

= This modified Employee class handles the new raise:

Il A class to represent employees in general (20-pa ge manual).
public class Employee {
public int getHours() {

return 40; I/ works 40 hours / week
}
public double getSalary() {

return 50000.0; // $50,000.00 / year
}

}
= What problem now exists in the code?

= The Employee subclasses are now incorrect.

= They have overridden the getSalary ¥ method to return other
values such as 45,000 and 50,000 that need to be changed.

—

"7 Copyright 2006 by Pearson Education 23

—

=2)

-

—

An unsatisfactory solution

public class LegalSecretary extends Secretary {
public double getSalary() {
return 55000.0;

}
}

public class Marketer extends Employee {
public double getSalary() {
return 60000.0;

}

= The employee subtypes' salaries are tied to the overall base
employee salary, but the subclasses' getSalary code does not

reflect this relationship.

- Copyright 2006 by Pearson Education

24

Calling overridden methods

= A subclass can call an overridden method with the
super keyword.

= Calling an overridden method, syntax:

super. <method name> (<parameter(s)>)

= Example:

public class LegalSecretary extends Secretary {
public double getSalary() {
double baseSalary = super.getSalary()
return baseSalary + 5000.0;

}

= Exercise: Modify the Lawyer and Marketer classes to also use
the super keyword.

—

~ Copyright 2006 by Pearson Education

—

25

Improved subclasses

public class Lawyer extends Employee {
public String getVacationForm() {
return "pink";
}

public int getVacationDays() {
return super.getVacationDays() + 5;
}

public void sue() {
System.out.printin("l'll see you in court!");
}

}

public class Marketer extends Employee {
public void advertise() {
System.out.printin("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;
}

=2)

-

- Copyright 2006 by Pearson Education

—

26

Inheritance and constructors

= Imagine that we want to give employees more vacation
days the longer they've been with the company.
=« For each year worked, we'll award 2 additional vacation days.

= When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

= This will require us to modify our Employee class and add some
new state and behavior.

=« Exercise: Make the necessary modifications to the Employee
class.

—

= P

~ Copyright 2006 by Pearson Education 27

—

Modified Employee class

public class Employee {

'}

™

—

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}

___ Copyright 2006 by Pearson Education

28

Problem with constructors

= Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee

public class Lawyer extends Employee {
N

= The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

= The long explanation: (next slide)

—

= P

~ Copyright 2006 by Pearson Education 29

—

The detailed explanation

= Constructors aren't inherited.

= The Employee subclasses don't inherit the
public Employee(int years) constructor.

= Since our subclasses don't have constructors, they receive a
default parameterless constructor that contains the following:

public Lawyer() {
super(); /[calls public Employee() constructor

= But our public Employee(int years) replaces
the default Employee constructor.

= Therefore all the subclasses' default constructors are now trying
to call a non-existent default superclass constructor.

—

= P

~ Copyright 2006 by Pearson Education 30

—

Calling superclass constructor

= Syntax for calling superclass's constructor:
super(<parameter(s)>);

= Example:
public class Lawyer extends Employee {
public Lawyer(int years) {
super(years); // call Employee constructor

}
_

=« The call to the superclass constructor must be the first
statement in the subclass constructor.

s Exercise: Make a similar modification to the Marketer class.

—

; Copyright 2006 by Pearson Education 31

—

—

; Copyright 2006 by Pearson Education 32

—

Modified Marketer class

Il A class to represent marketers.
public class Marketer extends Employee {
public Marketer(int years) {

super(years);

}

public void advertise() {
System.out.printin("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;
}

» Exercise: Modify the Secretary subclass to make it compile:

« Secretaries' years of employment are not tracked and they do not
earn extra vacation for them.

» Secretary objects are also constructed without a years parameter.

Modified Secretary class

Il A class to represent secretaries.
public class Secretary extends Employee {
public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);

}

= Note that since the Secretary doesn't require any parameters to its
constructor, the LegalSecretary now compiles without a constructor
(its default constructor calls the parameterless Secretary constructor).

= This isn't the best solution; it isn't that Secretaries work for O
years, it's that they don't receive a bonus. How can we fix it?

—

~ Copyright 2006 by Pearson Education 33

—

Inheritance and fields

= Suppose that we want to give lawyers a $5000 raise for
each year they've been with the company.

= The following modification doesn't work:

public class Lawyer extends Employee {
public Lawyer(int years) {
super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * years;
}

}

= The error is the following:
Lawyer.java:7: years has private access in Employee
return super.getSalary() + 5000 * years;

—

34

~ Copyright 2006 by Pearson Education

—

—

= P

—

Private access limitations

public class Lawyer extends Employee {
public Lawyer(int years) {
super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * years;
}

}

= The error is the following:

Lawyer.java:7: years has private access in Employee
return super.getSalary() + 5000 * years;

N

= Private fields cannot be directly accessed from other
classes, not even subclasses.

= One reason for this is to prevent malicious programmers from
using subclassing to circumvent encapsulation.

= How can we get around this limitation?

~ Copyright 2006 by Pearson Education

35

Improved Employee code

Add an accessor for any field needed by the superclass.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;
}

public int getYears() {
return years;
}

}

public class Lawyer extends Employee {
public Lawyer(int years) {
super(years);

public double getSalary() {
\ return super.getSalary() + 5000 * getYears()

=2)

}

- Copyright 2006 by Pearson Education 36

—

Revisiting Secretary

= The Secretary class currently has a poor solution.

= We set all Secretaries to O years because they do not get a
vacation bonus for their service.

« If we call getYears on a Secretary object, we'll always get 0.

=« This isn't a good solution; what if we wanted to give some other
reward to all employees based on years of service?

= Let's redesign our Employee class a bit to allow for a
better solution.

——a— Copyright 2006 by Pearson Education 37

Improved Employee code

Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;

}
public int getVacationDays() {

return 10 + getSeniorityBonus()
}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}

= How does this help us improve the Secretary ?

; Copyright 2006 by Pearson Education

—

38

Improved Secretary code

The Secretary can selectively override the
getSeniorityBonus method, so that when it runs its
getVacationDays method, it will use this new version as
part of the computation.

= Choosing a method at runtime like this is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super(years);

/I Secretaries don't get a bonus for their years of

service.
public int getSeniorityBonus() {
return O;
}
public void takeDictation(String text) {
System.out.printin("Taking dictation of text: " + te Xt);
}

}

—

~ Copyright 2006 by Pearson Education 39

—

