
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 9:
Inheritance and Interfaces

2Copyright 2006 by Pearson Education

Lecture outline

� background

� categories of employees

� relationships and hierarchies

� inheritance programming

� creating subclasses

� overriding behavior

� multiple levels of inheritance

� interacting with the superclass using super

3Copyright 2006 by Pearson Education

InheritanceInheritance

reading: 9.1 - 9.2

4Copyright 2006 by Pearson Education

The software crisis
� software engineering: The practice of
conceptualizing, designing, developing, documenting,
and testing large-scale computer programs.

� Large-scale projects face many issues:

� getting many programmers to work together

� getting code finished on time

� avoiding redundant code

� finding and fixing bugs

� maintaining, improving, and reusing existing code

� code reuse: The practice of writing program code once
and using it in many contexts.

5Copyright 2006 by Pearson Education

Law firm employee analogy
� common rules: hours, vacation time, benefits, regulations, ...

� all employees attend common orientation to learn general rules

� each employee receives 20-page manual of the common rules

� each subdivision also has specific rules:

� employee attends a subdivision-specific orientation to learn them

� employee receives a smaller (1-3 page) manual of these rules

� smaller manual adds some rules and also changes some rules from
the large manual ("use the pink form instead of yellow form"...)

6Copyright 2006 by Pearson Education

Separating behavior
� Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

� Some advantages of the separate manuals:

� maintenance: If a common rule changes, we'll need to update
only the common manual.

� locality: A person can look at the lawyer manual and quickly
discover all rules that are specific to lawyers.

� Some key ideas from this example:

� It's useful to be able to describe general rules that will apply to
many groups (the 20-page manual).

� It's also useful for a group to specify a smaller set of rules for
itself, including being able to replace rules from the overall set.

7Copyright 2006 by Pearson Education

Is-a relationships, hierarchies

� is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.

� every marketer is an employee

� every legal secretary is a secretary

� inheritance hierarchy: A set of classes connected by
is-a relationships that can share common code.

� Often drawn as a downward tree of connected boxes or ovals
representing classes:

8Copyright 2006 by Pearson Education

Employee regulations
� Consider the following employee regulations:

� Employees work 40 hours per week.

� Employees make $40,000 per year, except legal secretaries
who make $5,000 extra per year ($45,000 total), and
marketers who make $10,000 extra per year ($50,000 total).

� Employees have 2 weeks of paid vacation leave per year,
except lawyers who get an extra week (a total of 3).

� Employees should use a yellow form to apply for leave, except
for lawyers who use a pink form.

� Each type of employee has some unique behavior:

� Lawyers know how to sue.

� Marketers know how to advertise.

� Secretaries know how to take dictation.

� Legal secretaries know how to prepare legal documents.

9Copyright 2006 by Pearson Education

General employee code
// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}
}

� Exercise: Implement class Secretary , based on the previous
employee regulations.

10Copyright 2006 by Pearson Education

Redundant secretary code
// A redundant class to represent secretaries.
public class Secretary {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {
return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

11Copyright 2006 by Pearson Education

Desire for code-sharing
� The takeDictation method is the only unique behavior
in the Secretary class.

� We'd like to be able to say the following:

// A class to represent secretaries.

public class Secretary {

<copy all the contents from Employee class.>

public void takeDictation(String text) {

System.out.println("Taking dictation of text: " + te xt);

}

}

12Copyright 2006 by Pearson Education

Inheritance
� inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

� a way to group related classes

� a way to share code between two or more classes

� We say that one class can extend another by absorbing
its state and behavior.

� superclass: The parent class that is being extended.

� subclass: The child class that extends the superclass and
inherits its behavior.

� The subclass receives a copy of every field and method from its
superclass.

13Copyright 2006 by Pearson Education

Inheritance syntax
� Creating a subclass, general syntax:

public class <name> extends <superclass name> {

� Example:

public class Secretary extends Employee {

....

}

� By extending Employee , each Secretary object now:

� receives a getHours , getSalary , getVacationDays , and
getVacationForm method automatically

� can be treated as an Employee by any other code (seen later)

(e.g. a Secretary could be stored in a variable of type
Employee or stored as an element of an Employee[])

14Copyright 2006 by Pearson Education

Improved secretary code
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Now we only write the parts unique to each type.
� Secretary inherits getHours , getSalary , getVacationDays ,
and getVacationForm methods from Employee .

� Secretary adds the takeDictation method.

15Copyright 2006 by Pearson Education

Implementing Lawyer
Let's implement a Lawyer class.

� Consider the following employee regulations:

� Lawyers who get an extra week of paid vacation (a total of 3).

� Lawyers use a pink form when applying for vacation leave.

� Lawyers have some unique behavior: they know how to sue.

� The problem: We want lawyers to inherit most of the
behavior of the general employee, but we want to
replace certain parts with new behavior.

16Copyright 2006 by Pearson Education

Overriding methods
� override: To write a new version of a method in a
subclass that replaces the superclass's version.

� There is no special syntax for overriding.
To override a superclass method, just write a new version of it
in the subclass. This will replace the inherited version.

� Example:

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee clas s
public String getVacationForm() {

return "pink";
}

...
}

� Exercise: Complete the Lawyer class.

17Copyright 2006 by Pearson Education

Complete Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacationDays() {

return 15; // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}

� Exercise: Now complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

18Copyright 2006 by Pearson Education

Complete Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}
}

19Copyright 2006 by Pearson Education

Levels of inheritance
�Deep hierarchies can be created by multiple
levels of subclassing.

� Example: The legal secretary is the same as a regular secretary
except for making more money ($45,000) and being able to file
legal briefs.

public class LegalSecretary extends Secretary {
...

}

� Exercise: Complete the LegalSecretary class.

20Copyright 2006 by Pearson Education

Complete LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {
System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0; // $45,000.00 / year

}
}

21Copyright 2006 by Pearson Education

Interacting with the Interacting with the

superclass:superclass:
the the supersuper keywordkeyword

reading: 9.3

22Copyright 2006 by Pearson Education

Changes to common behavior

� Imagine that a company-wide change occurs that
affects all employees.

Example: Because of inflation, everyone is given a $10,000 raise.

� The base employee salary is now $50,000.

� Legal secretaries now make $55,000.

� Marketers now make $60,000.

� We must modify our code to reflect this policy change.

23Copyright 2006 by Pearson Education

Modifying the superclass
� This modified Employee class handles the new raise:

// A class to represent employees in general (20-pa ge manual).
public class Employee {

public int getHours() {
return 40; // works 40 hours / week

}

public double getSalary() {
return 50000.0; // $50,000.00 / year

}

...
}

� What problem now exists in the code?

� The Employee subclasses are now incorrect.

� They have overridden the getSalary method to return other

values such as 45,000 and 50,000 that need to be changed.

24Copyright 2006 by Pearson Education

An unsatisfactory solution
public class LegalSecretary extends Secretary {

public double getSalary() {

return 55000.0;

}

...

}

public class Marketer extends Employee {

public double getSalary() {

return 60000.0;

}

...

}

� The employee subtypes' salaries are tied to the overall base
employee salary, but the subclasses' getSalary code does not

reflect this relationship.

25Copyright 2006 by Pearson Education

Calling overridden methods
� A subclass can call an overridden method with the

super keyword.

� Calling an overridden method, syntax:

super . <method name> (<parameter(s)>)

� Example:

public class LegalSecretary extends Secretary {
public double getSalary() {

double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

}
...

}

� Exercise: Modify the Lawyer and Marketer classes to also use
the super keyword.

26Copyright 2006 by Pearson Education

Improved subclasses
public class Lawyer extends Employee {

public String getVacationForm() {
return "pink";

}

public int getVacationDays() {
return super.getVacationDays() + 5;

}

public void sue() {
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {

System.out.println("Act now while supplies last!");
}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

27Copyright 2006 by Pearson Education

Inheritance and constructors
� Imagine that we want to give employees more vacation
days the longer they've been with the company.

� For each year worked, we'll award 2 additional vacation days.

� When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

� This will require us to modify our Employee class and add some

new state and behavior.

� Exercise: Make the necessary modifications to the Employee
class.

28Copyright 2006 by Pearson Education

Modified Employee class
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}

29Copyright 2006 by Pearson Education

Problem with constructors
� Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

� The long explanation: (next slide)

30Copyright 2006 by Pearson Education

The detailed explanation
� Constructors aren't inherited.

� The Employee subclasses don't inherit the
public Employee(int years) constructor.

� Since our subclasses don't have constructors, they receive a
default parameterless constructor that contains the following:

public Lawyer() {
super(); // calls public Employee() constructor

}

� But our public Employee(int years) replaces
the default Employee constructor.

� Therefore all the subclasses' default constructors are now trying
to call a non-existent default superclass constructor.

31Copyright 2006 by Pearson Education

Calling superclass constructor

� Syntax for calling superclass's constructor:

super(<parameter(s)>);

� Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years); // call Employee constructor

}
...

}

� The call to the superclass constructor must be the first
statement in the subclass constructor.

� Exercise: Make a similar modification to the Marketer class.

32Copyright 2006 by Pearson Education

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

� Exercise: Modify the Secretary subclass to make it compile:

� Secretaries' years of employment are not tracked and they do not
earn extra vacation for them.

� Secretary objects are also constructed without a years parameter.

33Copyright 2006 by Pearson Education

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Note that since the Secretary doesn't require any parameters to its

constructor, the LegalSecretary now compiles without a constructor

(its default constructor calls the parameterless Secretary constructor).

� This isn't the best solution; it isn't that Secretaries work for 0

years, it's that they don't receive a bonus. How can we fix it?

34Copyright 2006 by Pearson Education

Inheritance and fields
� Suppose that we want to give lawyers a $5000 raise for
each year they've been with the company.

� The following modification doesn't work:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

35Copyright 2006 by Pearson Education

Private access limitations
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years);

}

public double getSalary() {
return super.getSalary() + 5000 * years;

}
...

}

� The error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

� Private fields cannot be directly accessed from other
classes, not even subclasses.

� One reason for this is to prevent malicious programmers from
using subclassing to circumvent encapsulation.

� How can we get around this limitation?

36Copyright 2006 by Pearson Education

Improved Employee code
Add an accessor for any field needed by the superclass.
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getYears() {
return years;

}
...

}

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * getYears() ;

}
...

}

37Copyright 2006 by Pearson Education

Revisiting Secretary
� The Secretary class currently has a poor solution.

� We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

� If we call getYears on a Secretary object, we'll always get 0.

� This isn't a good solution; what if we wanted to give some other
reward to all employees based on years of service?

� Let's redesign our Employee class a bit to allow for a

better solution.

38Copyright 2006 by Pearson Education

Improved Employee code
Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getVacationDays() {
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

� How does this help us improve the Secretary ?

39Copyright 2006 by Pearson Education

Improved Secretary code
The Secretary can selectively override the
getSeniorityBonus method, so that when it runs its
getVacationDays method, it will use this new version as

part of the computation.
� Choosing a method at runtime like this is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

